Analysis of Ancestry in Genetic Programming with a Graph Database

David Donatucci
M. Kirbie Dramdahl
Nicholas Freitag McPhee

Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA

25 April 2014
MICS, Verona, WI
Genetic programming demonstrated to be effective for a variety of applications.

Difficult to determine how this process works.

Databases allow examination of the internal interactions of a run.

Graph databases more efficient at this task than relational databases.

This knowledge may be used to improve genetic programming algorithms.
Outline

1. Genetic Programming
2. Graph Database
3. Experimental Setup
4. Results
5. Conclusions
Outline

1. Genetic Programming
 - GP Overview
 - Symbolic Regression and Fitness

2. Graph Database

3. Experimental Setup

4. Results

5. Conclusions
Genetic Programming Overview

- Genetic Programming is based upon biological principles.
- Individuals form a population.
- Transformations
 - Crossover (XO)
 - Mutation
 - Reproduction
 - Elitism
- Transformations occur over a specified number of generations.
- Individuals are rated by their fitness.
Transformations

Crossover sexual reproduction (root and non-root)

Mutation subtrees altered

Reproduction asexual reproduction

Elitism reproduction based on fitness
Symbolic Regression and Fitness

We are focusing on symbolic regression problems.

- Collection of test points as input.
- Evolve mathematical formula to fit data.

Fitness determines individual’s distance from target function.

- Lower the fitness, the better the individual.
- A fitness of zero would exactly match test data.

The goal of GP is to evolve an individual with as low a fitness as possible.
Outline

1. Genetic Programming

2. Graph Database
 - Neo4j
 - Cypher

3. Experimental Setup

4. Results

5. Conclusions
Neo4j is a graph database.
- relatively new tool
 - initial release 2007
 - popularized in 2010
- information is stored using a graph
- nodes and relationships
- efficient recursive queries compared with traditional databases

[Diagram of a graph with nodes and relationships]

Neo4j is popularized in 2010 and is used for efficient recursive queries compared to traditional databases.

[Diagram of a graph with nodes and relationships]

Donatucci, Dramdahl, McPhee (UMM) Analysis of GP Ancestry in Neo4j April '14, MICS, Verona, WI
Cypher

Neo4j’s query language is Cypher.

Fundamental elements of Cypher queries:
- START
- RETURN
- MATCH
- WHERE

\[
\text{START parent=node(43)} \\
\text{MATCH (parent)-[:PARENTOF]->(child)} \\
\text{WHERE id(child) < 47} \\
\text{RETURN parent, child;}
\]
Outline

1. Genetic Programming
2. Graph Database
3. Experimental Setup
 - Configurations
4. Results
5. Conclusions
Run Configurations

Target Function: \(\sin(x) \)

Variables: \(x \) (range 0.0 to 6.2, incremented by steps of 0.1)

Constants: range between -5.0 and 5.0

Operations: addition (+), subtraction (-), multiplication (*), protected division (/)

Generation Number: 100

Population Size Per Gen: 1,000 (3 runs) and 10,000 (1 run)

Transform Percentages: crossover (90%), mutation (1%), reproduction (9%)

Elitism: best 1%

Fitness: absolute error between target function and individual function
Outline

1. Genetic Programming
2. Graph Database
3. Experimental Setup
4. Results
 - Questions Asked
 - Fitness Over Time
 - Improved Transformations
 - Common Ancestor
5. Conclusions

Donatucci, Dramdahl, McPhee (UMM)
Questions Asked

1. **What does the fitness of the “winning” individual’s ancestry line look like over time?**

2. **How often does mutation improve fitness? Also, how often does crossover improve fitness, where the root parent is more fit than the non-root parent, and vice versa?**

3. **Does a group of individuals have a common root parent ancestor and what is the latest generation where such an ancestor occurs?**

4. **How many individuals in the initial generation have any root parent descendants in the final generation?**
Fitness Over Time

What does the fitness of the “winning” individual’s ancestry line look like over time?

![Fitness Graph](image)

- **Parent_type**
 - Non-root
 - Root

Donatucci, Dramdahl, McPhee (UMM)

Analysis of GP Ancestry in Neo4j

April ’14, MICS, Verona, WI
Percentage of Improved Transformations

How often does mutation and crossover improve fitness?

Results for Three 1,000 Individual Runs and One 10,000 Individual Run

![Graph showing the percentage of improved transformations over generations for different operation types (Mutation, NonRootParent, RootParent) for two different population sizes (10,000 and 1,000).]
Does a group of individuals have a common root parent ancestor and how many initial generation individuals have descendants in the final generation?
Outline

1. Genetic Programming
2. Graph Database
3. Experimental Setup
4. Results
5. Conclusions
Conclusions

- We can gather internal data efficiently.
- Provides more in depth information than statistical summaries.
- Support for hypotheses.

Future Work
- Trying different setup configurations.
- Enforcing the root parent to have better fitness in XO.
- Dynamically change parameters.
Thanks!

Thank you for your time and attention!

Contacts:
- donat056@morris.umn.edu
- dramd002@morris.umn.edu
- mcphee@morris.umn.edu

Questions?
References

LUKE, S.

Essentials of Metaheuristics, second ed.
Lulu, 2013.

MCPHEE, N. F., AND HOPPER, N. J.
Analysis of genetic diversity through population history.

POLI, R., LANGDON, W. B., AND MCPHEE, N. F.
A Field Guide to Genetic Programming.
(With contributions by J. R. Koza).

ROBINSON, I., WEBBER, J., AND EIFREM, E.
Graph Databases.
O'Reilly Media, Inc., 2013.